

POLLO BIORIGENERATIVO

Valutazione e confronto dell'impatto ambientale generato dalle diete in Biologico ed in Biorigenerativo

Relatore Dott. Alberto Basili Relatori

Prof. Cesare Castellini

Prof. Lucia Rocchi

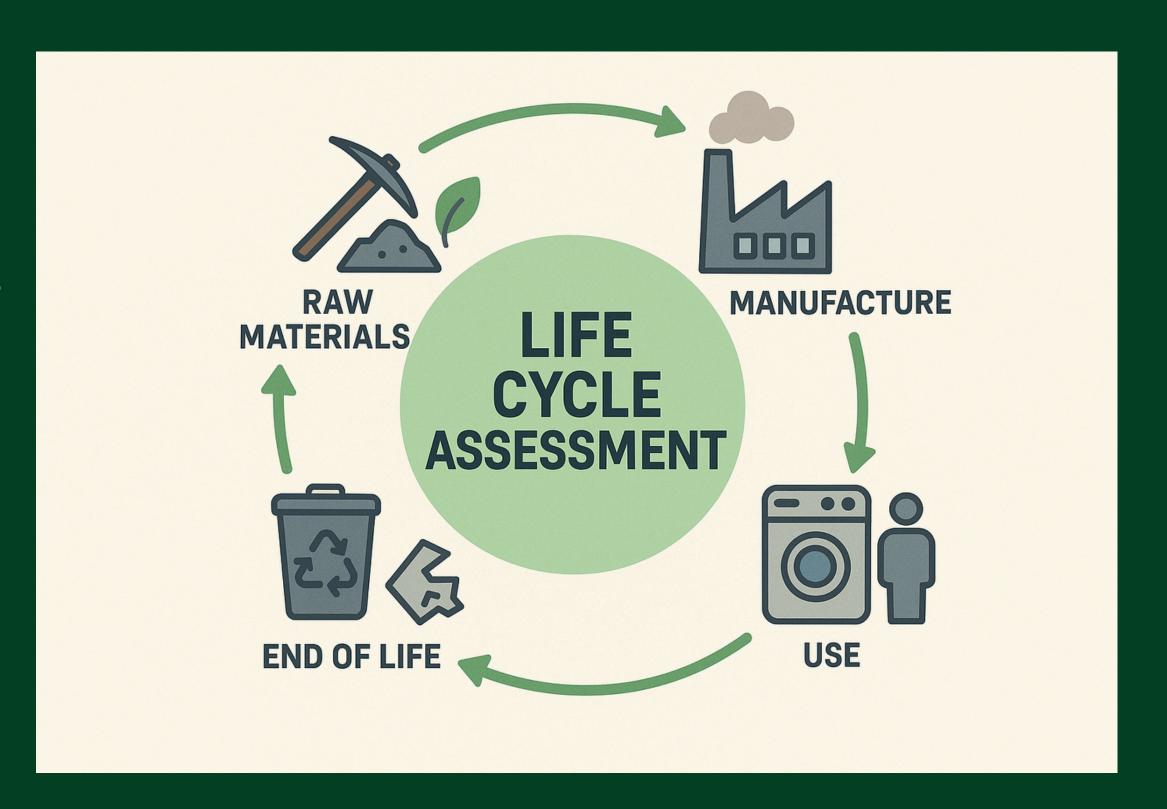
Prof. Luisa Paolotti

OBIETTIVO DELL'ANALISI

L'analisi che andremo a presentare si pone come obiettivo principale quello di determinare l'impatto generato dall'utilizzo delle diete contenenti specie vegetali coltivate secondo il metodo Biologico e secondo il metodo Biorigenerativo, impiegate attualmente dall'azienda Fileni.

La valutazione dell'impatto prende in considerazione tre step:

- la fase di coltivazione delle specie utilizzate nelle diete
- la fase di trasformazione di tali specie all'interno dei mangimifici
- la somministrazione di tali diete nell'area di allevamento

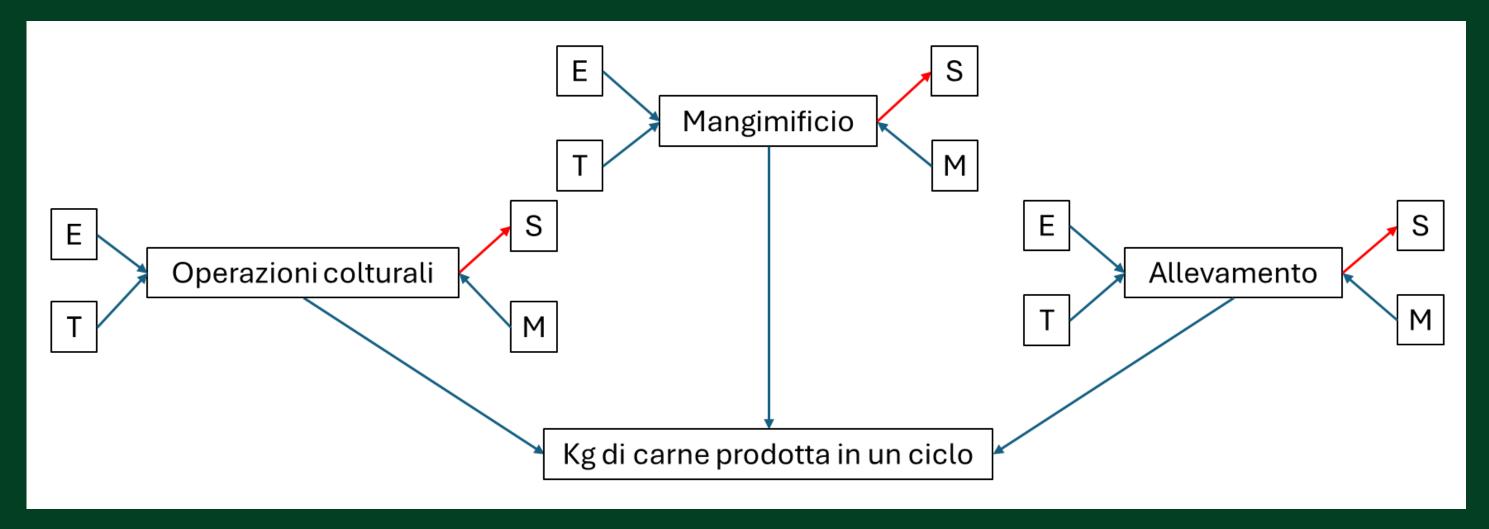

METODOLOGIA

LIFE CYCLE ASSESSMENT

L'Analisi del Ciclo di Vita (LCA) è una metodologia standardizzata che valuta i potenziali impatti ambientali di un prodotto o servizio lungo il suo intero ciclo di vita, dalla produzione allo smaltimento.

Le norme di riferimento per l'esecuzione degli studi di un LCA sono:

- ISO 14040:2006
- ISO 14044:2006



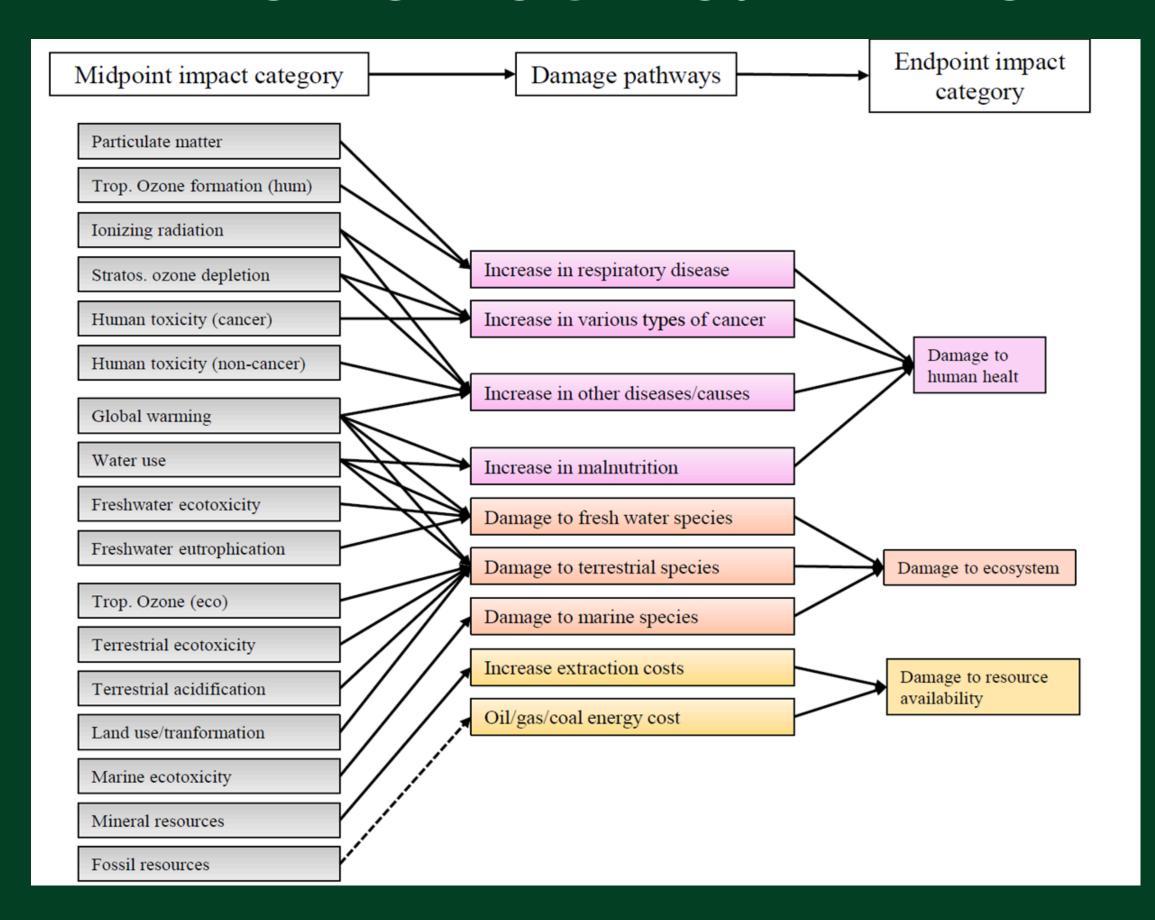
FUNCTIONAL UNIT

L'unità funzionale nell'LCA (FU) è la misura di riferimento che quantifica la funzione svolta dal sistema di prodotto oggetto di studio: serve a esprimere in modo chiaro e comparabile la prestazione che si vuole valutare.

Per questa analisi abbiamo preso come F.U. il quantitativo di carne prodotta nel ciclo di accrescimento, mettendo in comparazione la produzione di 1 kg di carne ottenuto con la dieta in biologico e con quella in bio-rigenerativo. In poche parole l'impatto è quantificato in base a quanto viene prodotto dal sistema.

LIFE CYCLE INVENTORY E LIMITI DEL SISTEMA

Fonte: Elaborazione propria

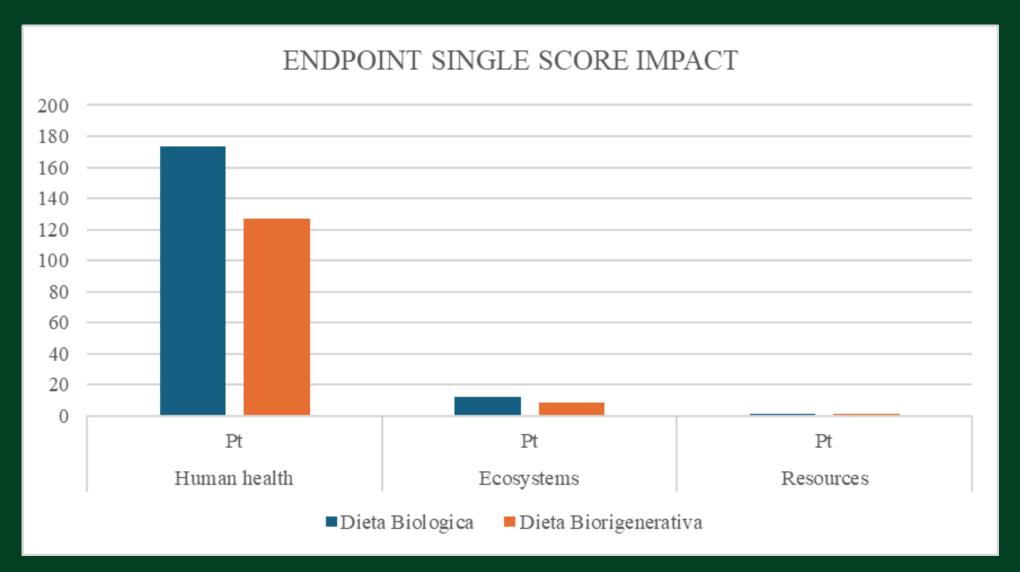

E = energia

T = transporto

M = materia prima

S = scarti/rifiuti

METODO ReCiPe: MIDPOINT E ENDPOINT


- Le categorie midpoint
 misurano impatti ambientali
 intermedi e specifici, mentre
 le categorie endpoint
 aggregano questi impatti per
 mostrare il danno finale su
 salute, ecosistemi e risorse.
- L'approccio midpoint è più dettagliato e preciso, quello endpoint è più sintetico ma più incerto, e aiuta a comunicare i risultati a un pubblico non tecnico

SISTEMI ANALIZZATI

- Dal Life Cycle Inventory vediamo che sono tre le fasi che compongono il ciclo: Coltivazione, Mangimificio ed Allevamento.
- La fase di mangimificio risulta comune ad entrambe le situazioni, in quanto la sua operatività non dipende dalla composizione delle diete ma dal quantitativo di prodotto da rielaborare.
- La fase di coltivazione viene messa a confronto data la differente composizione delle due diete.
- Gli allevamenti differiscono in quanto la somministrazione delle due diete è stata effettuata in due capannoni di diversa dimensione, con un numero di animali diverso per entrambe le prove.

ENDPOINT IMPACT ASSESSMENT

Categoria di danno	Unità	Dieta Biologica	Dieta Biorigenerativa	Variazione %
Human health	Pt	1.736.946.702	1.268.506.692	-27%
Ecosystems	Pt	1.196.645.402	8.593.950.962	-28%
Resources	Pt	1.706.998.906	1.309.561.251	-23%
Totale	mPt	1.873.681.232	1.367.541.814	-27%

Fonte : Elaborazione propria utilizzando il software SimaPro, metodo ReCiPe 2016

MIDPOINT IMPACT ASSESMENT

Categoria d'impatto	Unità	Dieta Biologica	Dieta Biorigenerativa	Variazione %
Global warming	kg CO2 eq	2.038.835.722	155.773.302	-24%
Stratospheric ozone depletion	kg CFC11 eq	0,21	0,14	-32%
lonizing radiation	kBq Co-60 eq	150.488.653	118.877.323	-21%
Ozone formation, Human health	kg NOx eq	4.402.869	3.332.845	-24%
Fine particulate matter formation	kg PM2.5 eq	9.776.138	7.071.315	-28%
Ozone formation, Terrestrial ecosystems	kg NOx eq	4.746.885	3.572.177	-25%
Terrestrial acidification	kg SO2 eq	49.508.058	35.742.192	-28%
Freshwater eutrophication	kg P eq	624.178	436.185	-30%
Marine eutrophication	kg N eq	441.059	298.231	-32%
Terrestrial ecotoxicity	kg 1,4-DCB	1.302.192.367	9.843.895.829	-24%
Freshwater ecotoxicity	kg 1,4-DCB	53.169.993	36.357.601	-32%
Marine ecotoxicity	kg 1,4-DCB	68.960.842	51.377.619	-25%
Human carcinogenic toxicity	kg 1,4-DCB	226.454.921	169.048.417	-25%
Human non-carcinogenic toxicity	kg 1,4-DCB	1.103.308.912	785.966.814	-29%
Land use	m2a crop eq	2.815.465.837	1.993.602.213	-29%
Mineral resource scarcity	kg Cu eq	236.571.484	161.955.066	-32%
Fossil resource scarcity	kg oil eq	561.309.275	440.257.187	-22%
Water consumption	m3	170.611.728	120.160.118	-30%

Fonte : Elaborazione propria utilizzando il software SimaPro, metodo ReCiPe 2016

VALUTAZIONI FINALI

CICLO PIU' BREVE E MINORE IMPATTO

In conformità ai dati presentati nei grafici precedenti, l'adozione della dieta Biorigenerativa consente di conseguire risultati analoghi a quelli ottenuti con la dieta Biologica, manifestando tuttavia un vantaggio in termini di impatto ambientale generale, ridotto del **27%**.

Si ritiene che tale risultato sia ascrivibile alle diverse colture impiegate nella dieta Biorigenerativa, le quali, sebbene garantiscano un apporto superiore di proteine vegetali per lo sviluppo animale, al contempo necessitano di una gestione agronomica che determina un impatto ambientale ridotto e un minor fabbisogno di risorse naturali.

Grazie per l'attenzione